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When Chebyshev pseudo-spectral methods are used with do-
main decomposition procedures in the muinerical solution of
partial differential equations, the wse of multiple domains can
significantly affect the accuracy of the approximation. This is
particularly true when the solution exhibits layer type behavior,
i.e., there are narrow regions of rapid variation. Accuracy may
be enhanced if the interfaces between adjacent subdomains are
such that large gradients occur near the interfaces, while accuracy
can be degraded if the rapid variations occur in the interior of
the subdomains. The use of appropriate mappings within each
subdomain can improve the accuracy of the approximation by
choosing mappings so that the transformed function is more
readily approximated by a low order polynomial. The particutar
choice of mappings, however, depends critically on whether the
soiution exhibits boundary layer gr interior layer behavior within
each subdomain. We analyze the relationship between interface
location and mappings required to obtain an efficient approxima-
tion of such functions. We compare two strategies, both based
on constructing subdomains so that each subdomain contains
only one layer. In the first strategy interface locations are chosen
so that the rapid variations occur as interior layers and mappings
are employed which enhance the resolution of such layers {strat-
egy 1 for interior}. In the second strategy interface locations are
chosen so that rapid variations oceur as boundary layers and
mappings are employed which enhance resolution of boundary
layers {strategy B for boundary). Both strategies lead to adaptive
domain decompaosition procedures based entirely on the locations
of the layers. We demonstrate that strategy B offers superior
accuracy for a given computational effort and employ this strategy
i developing an adaptive domain decomposition method for
problems with multiple layers. Both strategies are comparable
regarding spectral radii of the resulting matrices, and we conclude
that domain decomposition itself cannot result in larger stable
time steps when accuracy of the approximation of the layer
is considered. The adaptive domain decomposition method is
illustrated by the computation of both axisymmetric and cellular
flames with a sequential reaction rmechanism involving two reac-
tion zones. © 1995 Academic Press, Inc.
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1. INTRODUCTION

Fhe accuracy of Chebyshev pseudo-speetral methods in ap-
proximating solutions o partial differential equations can be
significantly degraded when used to approximate solutions
which have localized regions of rapid variation (layers). Such
problems occur in many arcas of application, such as combus-
tion, fluid dynamics, solidification, solid mechanics, and wave
propagation, to name but a few. The approximations may ex-
hibit spurious oscillations which can lead to nonlinear instabili-
lies or spurious predictions of solution behavior. Accuracy is
also sensitive to the locations of the regions of rapid variation.
For example, there is significant evidence that pseudo-spectral
methods are more effective in approximating functions where
rapid variations or large gradients occur close to the boundary
of the domain, as opposed to its interior, e.g., [7, 28].

The problem of computing a single layer can be handled by
employing suitably chosen mappings so that in the mapped
coordinate the sclution varies gradually and can thus be well
approximated by a low-order polynomial. A family of map-
pings, suitable primarily for internal layers, was introduced in
[7] and was compared with other families of mappings, in
particular mappings suitable to enhance the resolution of bound-
ary layers. Such families of mappings form the basis of an
adaptive psendo-spectral method which has been used to accu-
rately solve a range of problems involving solutions with local-
ized regions of rapid variation (e.g., [1, 4-6, 18)).

In this method mappings are chosen adaptively from a pre-
scribed family of mappings so as to minimize a functional of
the selution which measures the error in the approximation.
This method allows the benefits of spectral and pseudo-spectral
methods, e.g., high accuracy, to be realized for the approxima-
tion of rapidly varying functions without the spurious oscilla-
tions which often accompany the use of spectral methods in
approximating such functions. To date, both the proposed fami-
lies of mappings and the computations have been primarily for
problems involving either only one region of rapid variation
or several closely spaced regions which are effectively treated
as a single region.
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The problem of resolving functions with localized regions
of rapid variation is particularly important in combustion. Acti-
vation energies of the chemical reactions in combustion are
typically large. As a result the reaction terms are significant
only in narrow regions termed reaction zones. In the limit of
infinite activation energy reaction zones shrink to surfaces
termed flamed fronts, across which certain jump conditions
hold. While the lame front model is well suited for mathemati-
cal analysis (e.g., [23, 24]), numerical computations are gener-
ally conducted for the case of finite activation energy, where
the flame occupies a region of small but finite thickness. In
this case the solution is a smooth, infinitely differentiable func-
tion, with large gradients occurring over the narrow reaction
zone. In this paper we are concerned with the numerical approx-
mmation of such smooth, but rapidly varying, functions, by the
use of Chebyshev pseudo-spectral methods. Although reaction
zones are, sirictly speaking, not fronts, since the solution is
typically infinitely differentiable across the reaction zone, we
will use this term where appropriate to describe localized re-
gions of rapid variation. We note that the problem of resolving
functions with narrow layers occurs in other areas of application
as well (e.g., wave propagation and solid mechanics).

In many applications there is only a single front associated
with the solution. This typically occurs in combustion, for
example, when the model accounts for only a single reaction.
For such functions the use of a suitably chosen family of map-
pings, together with a Chebyshev pseudo-spectral approxima-
tion in the transformed coordinates, allows for a highly accurate
approximation of the solution [4, 18]. However, in many appli-
cations the solution can exhibit multiple fronts. This can occur
in combustion, for example, when a multiple reaction mecha-
nism is necessary to adequately model the phenomena to be
studied. In this case multiple fronts, not necessarily closely
spaced, can occur. We note that other physical mechanisms
can also lead to multiple fronts (e.g., [27]).

When there are multiple fronts the effectiveness of the adap-
tive pseudo-spectral method depends on the ability of the map-
ping family to resolve multiple regions of rapid variation. Many
of the mappings employed in the computations can increase
resolution within a specific region; however, their effectiveness
can be degraded when employed to approximate multiple layers
which are not closely spaced [7]. One alternative is to develop
and employ mappings which can resolve multiple regions of
rapid variation.

An altemnative procedure is to employ multiple domains,
chosen so that within each subdomain there is only a single
region of rapid variation (layer). We note that multi-domain
procedures may offer advantages over single domain proce-
dures unrelated to the computation of problems with multiple
layers. For example, (i) they are suitable for parallel computa-
tion, e.g., [L1, 15], (ii) they may allow for more well-condi-
tioned matrices, since within each subdomain a smaller number
of collocation points can be used, and similarly, (iii) they may
allow for larger timesteps for explicit schemes due to reduced
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spectral radii of the resulting differentiation matrices. Multi-
domain procedures have been previously used to approximate
functions with localized regions of rapid variation, e.g., [13,
21]; however, these calculations involved essentially one layer
and the multi-domain procedure was employed to match a small
inner region at the layer with larger domains away from the
layer. The emphasis in this paper is on problems involving
mudtiple tayers, the adaptive determination of interface location,
and the interaction of the domain decomposition with associated
mappings within each subdomain. In particular, we will de-
scribe a procedure to determine interface locations adaptively
from the locations of the layers, a problem which can be ad-
dressed in several ways. We will also demonstrate that points
(ii) and (iii) above are not necessarily realized when approxi-
matiiig a function exhibiting layer type behavior, since in this
case the condition number and spectral radius of the resulting
differentiation matrices appear to depend upon the degree of
expansion of the layer region due to the domain decomposition
and the mapping, in addition to the nomber of coilocation
points employed.

The methods that we describe here will allow for adaptive,
high resolution Chebyshev pseudo-spectral calculations of
problems with multiple layers. We develop adaptive domain
decomposition strategies in which subdomains are adaptively
determined so that each subdomain contains only one layer.
The methods we consider are based entirely upon the locations
of the layers, so that adaptive determination of the locations
of the layers automatically leads to adaptive determination of
interface locations. We investigate two possible strategies relat-
ing interface location, layer location and the choice of mapping
family and determine a preferred strategy based on numerical
experiments approximating functions exhibiting layer-type be-
havior.

The problem of adaptive domain decomposition, in particu-
lar, adaptively determining interface locations, can then be
reduced to the adaptive determination of layer location, a prob-
lem which has been extensively studied, particularly in the
context of Chebyshev pseudo-spectral approximations. General
techniques, involving the minimization of functionals monitor-
ing the numerical error have been considered in [4, 5, 17, 18].
In these techniques the minimization must determine both the
parameters of the mapping and the interface locations. Simpler
techniques avoid the minimization problem by using properties
of the differential equation, for example, by examining particu-
lar functions of the solution. In combustion, for example, esti-
mates for the locations of the reaction zones can be obtained
from the locations of the maxima of the reaction rate terms
[11]. This procedure is employed in the numerical computations
of a combustion model which we present here. We also compare
ditferent domain decomposition strategies by considering ap-
proximation of functions for which the locations of the layers
are assumed known in advance.

Three considerations must be addressed in determining an
adaptive multi-domain procedure, even assuming prior knowl-
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edge of the layer location. These are: (i) to develop a procedure
to adaptively determine the interfaces between adjacent subdo-
mains, (ii) to determine a suitable family of mappings to employ
within each subdomain, and (jii) to match the mappings to the
interface determination strategy.

These points are related. In particular, the subdomains can
be determined so that the layers are either interior to the subdo-
mains, or ave near the boundary. Depending upon the placement
strategy, mappings can be used which are suitable for interior
layers or boundary layers. We consider two possible domain
decomposition strategies to resolve multiple layer solutions:

* Use an interior layer mapping and determine the domain
interfaces so that the layer is located away from the boundary
(strategy I (for interior)).

* Use a boundary layer mapping and determine the domain
interfaces so that the layer is located at the boundary (strategy
B {for boundary)).

We note that strategy 1 leads to one subdomain per layer while
strategy B leads to two subdomains per layer. In Section 2 we
describe the numerical method and the associated mappings.
In Section 3 we describe the results of the two strategies when
applied to the approximation of certain functions exhibiting two
layer behavior. We also illustrate the domain decomposition
method for a problem in combustion with multiple reactions.

2. NUMERICAL METHOD

We first describe the standard pseudo-spectral method. This
description will be brief, since details can be found in [8, 10,
16]. For concreteness we consider a one-dimensional model
equaticn

U, = Uy + Ry, ~1=x=1, ()
where R(u) represents a nonlinear term not involving deriva-
tives. We assume that the problem has been scaled to the

interval J, {—1 = x = 1}. The solution is approximated by
expanding u as a finite sum of Chebyshev polynomials

g
u=u, = a;Tix). (2)
=

In the pseudo-spectral method the expansion coefficients a; are
obtained from collocation; that is, the function u, is forced to
solve (1) at a set of J + 1 points x;, called the collocaticn
points. The unknowns of the problem are the values of i; at
the coliocation points. Pseudo-spectral methods are particularly
well suited to nonlinear problems because the noanlinearities are
evaluated directly in terms of function values at the collocation
points. The expansion (2) is used only for the purposes of
computing spatial derivatives. Typically the collocation points
are the Gauss—Lobatto points,
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x=cos(juldy (G=0,..,J0).

The major advantage of pseudo-spectral methods over finite
difference methods is that they can exhibit enhanced accuracy
for a fixed computational effort. In fact pseudo-spectral methods
exhibit infinite-order accuracy. That is, the error ¢ = u — u,
satisfies, in an appropriate norm,

lell = 0(7™) (3)

for ali » = 0 and sufficiently differentiable functions u. The
constants involved in the order relation in (3} depend upon the
size of the derivatives of u. This is in contrast to finite difference
methods where the error is of a fixed order, for example G(J ™%
for a second-order method. In practice spectral methods have
been shown to be significantly more accurate than finite differ-
ence methods for a variety of problems in areas such as fluid
dynamics and meteorology [8, 10, 16].

Pseudo-spectral methods are, however, prone to inaccuracies
and oscillations when used to approximate functions with local-
ized regions of rapid variation such as occur in many areas of
application. In addition, there is evidence that these methods
are significantiy more accurate when the regions of rapid varia-
tion are located close to the boundaries, for example [7, 16,
28]. However, even boundary layers can exhibit oscillations if
the layers are sufficiently thin.

One approach to enhance the accuracy of pseudo-spectral
methods is to employ coordinate transformations so that in the
transformed coordinate the function varies more graduvally and
so they can be better approximated by a polynomial expansion
[1,4,5,17, 18). Specifically, assume that a family of mappings,

x = g5, o), [C)]

is introduced. Here x represents the physical coordinate, —1 =
& = 1 1is the transformed coordinate, and « denotes one or
possibly more parameters to be determined in the course of the
computation. The pseudo-spectral method can then be applied
to the transformed equation to approximate the transformed
function u(g(s, e}, ). The effect of the mapping can be regarded
as transforming the function to be approximated to u(g(s, &))
from u(x). If the mapping is properly chosen, for example, so
that some measure of the approximation error is minimized,
u(g(s, o)) will vary more gradually and so will be more readily
approximated by a polynomial expansion.

The construction of a particular family of mappings is analo-
gous to techniques in analysis, where thin layers are stretched
by appropriate stretching factors so that the structure of the
layer can be determined. In applications involving the numerical
solution of partial differential equations, in particular in com-
bustion, neither the jocation of the layer nor the appropriate
degree of stretching is known in advance and must be obtained
adaptively, i.e., from properties of the solution as it evolves
in time. The adaptive procedure described in |4] employed a
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functional which monitored the spectral interpolation ervor.
Coordinate transformations were chosen which minimized the
value of this functional. This approach can also be used to
obtain interface locations [3].

It is also possible to use information from the underlying
system of partial differential equations to determine appropriate
mapping parameters. For example, in combustion, the locations
of the reaction zones can be estimated from the maxima of the
reaction rate terms, while the widths of the reaction zones can
be estimated from a suitably nondimensionalized activation
energy. In this way costly minimization problems can be
avoided. This procedure is employed in our combustion calcnla-
tions described.

In order to determine the most effective domain decomposi-
tion strategy, we also study the approximation of specific func-
tions exhibiting layer-type behavior. We assume that the loca-
tions of the layers are known beforehand, as well as the widths
of the layers. With the specification of layer locations and
mapping parameters, the subdomain interfaces can be deter-
mined. In our approximation results, we present and compare
strategies for adaptive domain decomposition for functions with
mulitiple layers.

The effectiveness of the method depends on the properties
of the family of mappings. Most families of mappings which
have been used with this method are constructed so as to resolve
a single region of rapid variation. The construction of families
of mappings capable of resolving multiple regions of rapid
variation would require additional parameters to characterize
the family (i.e., the dimension of @ would become larger), thus
resulting in a considerably more expensive minimization
problem,

In applications it is generally known whether the layer to be
resolved is an interior layer or a boundary layer, so that the
particular family of mappings should be chosen to reflect this
property. We have considered two families of mappings which
have been employed as part of the adaptive pseudo-spectral
method. The first family of mappings is a two-parameter family
of mappings,

x = x; + an((s — somay,

where 5 and 7 are determined so that (5) maps the interval [
onto itself. The values of s, and 7, determined in this way are

v—1
S:.
TS

v = tan"{a, {1 + x))/tan Ya,1(1 — x)),
7 = tan~ (o (1 — x 0/ — 5).

The parumeters specifying each member of the family are x;
and a;.

This mapping is chosen so that the g7! is an approximation
to a step function with a near discontinuity at x = x;. The
gradient of the inverse mapping near this point becomes larger

5)

135

as ar, decreases. Thus for those components of the solution that
are close to step functions (in combustion these are typically
temperature and concentration profiles) the result of the map-
ping is to get a transformed solution which is nearly linear and
thus well approximated by a low order pelynomial [7). Thus
o, can be thought of as measuring the narrowness of the layer
while x, measures its location.

Although in principle the family of mappings (3) can also
be applied to boundary layers, this requires the determination
of two parameters and the mapping family becomes singular
atx;= * 1. A family of mappings designed to resolve boundary
layers is

x = 4/7 tan” [ tan(m/4(s — 1] + 1, (6)
which involves only one parameter. For ap > 1 the boundary
near x = —1 is expanded while for o << 1 the boundary near
x = 1 is expanded. (We note that similar families of mappings
can be constructed which expand the region around x = 0 at
the expense of both boundaries. One such family was employed
in [1, 2, 9] and allows for an arbitrary degree of expansion,
while another family was empioyed in [20] and has the effect
that the images of the Gauss—Lobatto points are nearly
equally spaced.}

The mappings (5) and {6) can be effectively employed in a
multiple domain computation if there is only one layer within
each subdomain. The interval [ is divided into one or more
subdomains, which are then mapped to the interval [ using
a linear mapping. The solution is approximated within each
subdomain using Chebyshev spectral or pseudo-spectral meth-
ods with appropriate interface conditions connecting the solu-
tion across the subdomain boundaries. Subdomains can be cho-
sen so that within each subdomain the layer is a boundary layer
or an interior layer. Once this choice is made the interfaces
can be chosen adaptively from knowledge of the layer locations,

In the applications considered here we solve a problem of
parabolic type. Appropriate interface conditions are continuity
of the solution and its first derivative norinai to the interface.
We work in polar coordinates and take the interfaces as circles,
so that the interface conditions are that ¥ and u, be continuous
cross the interface, where u denotes any one of the dependent
variables. We enforce these interface conditions by creating a
differentiation matrix for the selution in the entire domain, i.e.,
encompassing all of the subdomains. The interface conditions
are enforced by incorporating them directly into the differentia-
tion matrix.

The use of multiple domains can lead to an improvement in
accuracy by (i) resolving the thin layers in the problem by
introducing domains corresponding (o the length scales appro-
priate for the layers and (ii) isolating different regions of rapid
variations so that each subdomain contains only one such layer
and then employing mappings such as those described above
to resolve the solution within the subdomains. The effectiveness
of the method in resolving multiple layer problems depends
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upon the choice of the subdomains and the mappings. A poor
choice can lead to a significant degradation in accuracy [7].

When domain decomposition techniques are employed, the
issue of boundary or interior layer becomes a crucial issue in
designing the sirategy to choose the locations of the subdo-
mains. According to strategy B (boundary) the subdomains can
be chosen so that within each subdomain the solution is a
boundary layer. The advantages of the boundary layer approach
are (i) Chebyshev approximations appear to be naturaily more
accurate for functions which vary rapidly near the boundary as
opposed to functions which vary rapidly in the interior [7, 28]
and (ii) only one parameter needs to be determined when the
mapping family (6) is employed. A disadvantage is that the
interface conditions, not the differential equations, are applied
in the regions which are generally most nonlinear and most
important for the overall solution (e.g., the reaction zones for
combustion problems).

According to the alternative strategy, strategy ! (interior),
the subdomains are chosen so that the tayers are located away
from the boundaries. Within each subdomain the interior layer
mapping (3) is employed, thus resulting in two mapping param-
eters which have to be determined (although the location of
the layer can be determined by examining the reaction rate
terms or other functions of the solution).

3. RESULTS

Qur first numerical results are designed to compare strategies
1 and B in approximating functions exhibiting layer behavior.
We therefore consider specified functions f(x)} defined for
—1 = x = 1 exhibiting one or more layers. Both domain
decomposition strategies require knowledge of the locations of
the layers. In computations of partial differential equations,
estimates of the locations of the layers would be obtained
adaptively from the solution, as they are in cur combustion
calculations. In our approximation results, which are only de-
signed to compare the two domain decomposition strategies,
we assume that the locations of the layers are known,

Given knowledge of the layer locations, the interval —1 <
x = 1 is decomposed according to the strategy considered. For
strategy I the domains are chosen so that the layer is in the
center and the interface between two layers is halfway between
the layers. For strategy B the interface is at the center of the
layer and the interface between two adjacent layers is in the
center between the two layers. For each case we assume that the
same number of points, N, is employed within each subdomain.

We next describe the different mappings that are applied
within the subdomains. We let x denote the original coordinate.
Each subdomain is first mapped to the interval —1 = 5" = |
via a linear mapping from x to a coordinate s'. A further
mapping. of the form (5) for strategy [ and (6) for strategy B
is then applied within each subdomain. The Chebyshev interpo-
lant to fis then computed as a function of s at the Gauss—Lobatto
points. The accuracy of the approximation is then measured
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by computing the derivatives (in x) at the coliocation points.
Specifically we consider the errors

E; = max|d'flds’ — D¥f|, i=1,2,

where D denotes the differentiation operator on the collocation
points for each multiple domain strategy and the maximum is
taken over all coliocation points. Similar results, although at
lower error levels, are obtained for the approximation error;
i.e., i = 0 with the error taken over different points other than
the collocation points.

This procedure is designed to model the adaptive procedure
proposed for the solution of partial differential equations. The
main difference is that in the solution of partial differential
equations the location of the layers is obtained from an adaptive
procedure. In our combustion computations the layer locations
can be determined from the maxima of the reaction rate terms,
In addition, parameters for the layer mapping (either (5)) or
(6} have to be determined. For both strategies | and B there is
one mapping parameter, measuring the width of the region of
rapid variation which has to be determined. We denote this
parameter generically by o. Our approximation results are pre-
sented for those values of « for which the sum E| + E, is mini-
mized.

We first consider the case of a single layer. In this case
strategy I is simply a single domain computation employing
the mapping (5). We note that this case has been analyzed in
[7] for slightly different functions and error measures. We
consider the function

fix) = 1 ~ tanh{{x — s)/e), -1 =x=1 (7
This function models the behavior of concentration profiles
and, to some extent, temperature profiles for single reaction
combustion models. There is a region of rapid variation at
x = s, the width of which is proportional to &.

The accuracy of the approximations vsing the two different
strategies is compared for discretizations involving roughly the
same computational effort in employing the approximations
in solving partial differential equations. We assume that the
pseudospectral method will be implemented using matrix multi-
plication to compute the spatial derivatives. In this case two
domains with ANy points in each subdomain will require
O(2N}) operations per timestep, while a single domain compu-
tation with N, points will require O(NT) operations per timestep.
Thus in order to have a comparable computational effort for
each strategy N; and Np should be related by Ny/Ny = V2.

The location of the layer must be estimated for both strate-
gies. The main feature of strategy B is that the interface location
"xiv is taken as the location of the layer, while for strategy I
the location of the layer is related to the parameter x; in (5).
In computations, estimates of the layer location can be obtained
in general via minimization of functionals related to the approxi-
mation error [3, 4]. It is often possible, however, that this
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TABLE 1

Errors for Single Domain Approximation and Strategy B in
Approximating 1 — tanh{(x — s)/g)

Strategy K o N E, E,
1 0.0 022 43 3.94 X 1077 1.38 X 107
I .01 014 43 5.52 X 1073 2.96 x 107
B 0.0 055 3t 1.63 X 107% 335 x 107
B 0.01 045 31 638 X 10°¢ 321 x 1073

minimization can be avoided and the layer location can be
obtained by using properties of the differential equations. For
example, in combustion problems the locations of the reaction
zones can be obtained from the maxima of the reaction rate-
terms. In the examples presented here we assume that the loca-
tion of the layer is known via some technique and we focus
on the accuracy of the two different strategies in approximating
the solution.

An important consideration, however, is the eifect of imper-
fect knowledge of the layer location. In applications the layer
location may not be precisely known due to numerical errors
associated with the procedure to determine layer location. In
addition, there may be a cellular structure along the layer (e.g.,
along the front), In this case the layer location may vary with
a coordinate along the front. In order to simplify both the
transformations and the geometric domains, an average value
of the layer location must be specified. In the examples pre-
sented here we test the sensitivity of the two strategies to
variations in the layer location by varying s and fixing the
location parameters xpr = x; = 0. We consider a variation in
s of order of the thickness of the layer (g) which corresponds
to typical cells in our combustion computations. Deeper cells
require more collocation points in order to use an interface
which is independent of location along the front. In Table T we
compare the errors for the two strategies for e = 1 X 1072
We note that problems in which the layer is located at the
center of the domain represent the worst case for mappings
such as (5) [7], so that improved results for this mapping might
be expected for tayer locations closer to the boundary.

The results in Table I indicate a marked improvement in
accuracy for both first and second derivatives when the interface
is located very close to the center of the layer (i.e., 5 = 0).
These results reflect the tendency of Chebyshev approximations
to better approximate boundary layers rather than interior tay-
ers, even when mappings are employed [7, 28]. When the
interface is away from the layer location (i.e., s = 0.01) the
accuracy of both methods is degraded. In this case as well the
errors for strategy B are smaller than those for strategy I
However, this value of 5 is near the limit of accurate resolution
for the second derivatives as the computed errors are very
sensitive to small variations in N. Given the advantage of a
multiple domain computation for parallel computation, the re-
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sults indicate that 2 multiple domain approach empioying strat-
egy B may be more efficient than a single domain approach
even for solutions exhibiting one layer.

We next consider a Gaussian function exhibiting spike-
like behavior

Ax) = exp(—((x = ). ®)

This models the behavior of the reaction rate terms typically
occurring in combustion, We again set x; = x; = 0 and vary
s in order to test the robustness of each strategy. Results compar-
ing the single domain approximation with domain decompost-
tion based on strategy B are given in Table Il fore = 1 X 1072

The results, while not as definitive as those in Table | demon-
strate that strategy B is comparable to the single domain approx-
imation and shows a definite superiority in approximating the
first derivative when the interface location is near the layer
location. As before, the accuracy of the approximation degrades
when s is of the order of .

We have examined the condition numbers of the differentia-
tion matrices in the original coordinate, which includes the
derivative of the mapping, produced by both sirategies. We
find little differences in the spectral radius for the differentiation
matrices produced by strategy B over one subdomain and that
produced by strategy I over the full domain. Indeed, the spectral
radius for the first derivative matrix for the case corresponding
to the first entry in Table [ is 714, while for the third entry
{two domain calculation) it is 1148. Analogous numbers for
the second derivative matrix are 5.09 X 10 and 6.95 X 10
Thus the spectral radius for the single domain with 43 points
is smaller than that for the subdomain with 31 points. Examina-
tion of the resulting collocation points indicates that the strategy
B approximation results in a greater clustering of collocation
points in the layer than for strategy 1. We believe that this
accounts for the reduced spectral radius for the strategy 1 ap-
proximation even though the number of collocation points is
greater, We conclude that when domain decomposition methods
are employed to resolve problems with layers, the spectral
radius depends most critically on the clustering of coilocation
points within the layer, which is related to the resolution of the
layer, rather than the particular domain decomposition strategy.

TABLE il

Errors for Single Domain Approximation and Strategy B in
Approximating exp{—((x — s)/&)")

Strategy ¥ @ N E, E.
I 0.0 030 43 1.65 x 10 1.57 x 1072
I 0,01 A28 43 .82 % 107* 1.¢1 x 10
B 0.0 {055 31 1.38 x 1073 1,94 X 1072
B 0.01 080 31 201 x 107 309 x 10°F




TABLE 11

Errors for Strategies B and I in Approximating
(2 — tanh((x — 5,)/&) — tanh{(x — sy)/e})/2

Strategy £ 53 o N E E,
i .5 —0.5 037 43 200% 107 3.69 X 107
1 0.49 —049 028 43 131 X 1073 1.20 % 1073
B 0.5 —{5 100 31 7.07 x 107 1.20 % 1073
B .49 —0.49 095 31 3.20 X 10°¢ .84 x 1073

We next consider the approximation of functions exhibiting
a multiple layer structure. We first consider the function

Jixy=(2 — tanh((x — 5,)/e)
— tanh((x — 5,)/e))/2,

9

—1=x=1,
with ¢ = 1 X 107% This function exhibits two layers, at x =
s, and x = 5, respectively. In order to test the robustness of
the methods we consider the values s, = —s, = 0.5 as well
as perturbations of these values. As before we consider the
location parameters to be known. Thus for strategy 1 we use
two subdomains, DI: —1 = x = 0 and Df;: 0 = x = | with
the location parameter of the mapping x; = 0 in each subdomain.
For strategy B we employ four subdomains DB: —1 = x =
=035, DBy —05 = x =0, DB 0 < x =< 0.5, and DB,
0.5 = x = |. We test the robustness of each strategy by varying
51 and 5,. The robustness of both methods to variations in the
layer locations is tested by varying s, and 5. As each subdomain
is mapped to the interval I by a linear mapping, differences
between the layer location and the interface location or the
location parameter x, may be magnified after this mapping is
applied. This factor should be considered in assessing resolution
requirements for problems with multiple layers. The two strate-
gies are compared in Table TI1.

The results demonstrate again that strategy B is preferable
when the interfaces are near the layer locations. The errors for
strategy B are reduced from those of strategy I by approximately
a factor of 5 for the first derivatives and by about a factor of
2 for the second derivatives. Both methods degrade as the
interfaces move away from the layer location. Strategy B leads
to nearly an order of magnitude reduction for the error in the
first derivatives, although for this particular case, the error for
the second derivative is somewhat larger than for strategy 1.

Finally we consider the approximation of a function exhib-
iting multiple spikes by considering the function
f) = (exp(—((x — 5))/e)) + exp(—((x — s2)/e)))/2. (10)
Results comparing the two strategies for s, = —s, = % are
given in Table IV.

The results for all four test cases are consistent with previous
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studies of the effect of layer location on the accuracy of Cheby-
shev approximation for functions with narrow regions of rapid
variation. There is a tendency for Chebyshev pseudo-spectral
methods to provide more accurate approximations for boundary
layers as opposed to interior layers, e.g., [7, 28]. Indeed, the
direct Chebyshev approximation of interior layers (i.e., without
mappings) is a difficult problem requiring a large number of
collocation points. It is shown in [7] that the mapping (3)
makes possible the efficient approximation of both interior and
boundary layers, provided the parameters of the mapping are
properly chosen. The use of mappings such as (5) reduces, but
does not eliminate, the disparity in accuracy in the approxima-
tion of boundary layers as opposed to interior layers. This
explains the results presented here, which show that strategy
B allows a more efficient approximation of multiple layers than
strategy | and is thus a preferred method for adaptive domain
decomposition. This difference is persistent over a range of
functions and examples beyond those presented here.

A potential question associated with strategy B, however,
is the effect of imposing interface conditions rather than the
differential equations at points within the layer, rather than
away from the layer. For example, in combustion the interface
conditions would be imposed in the reaction zone, where the
chemical reaction terms are most important and are extremely
sensitive to the pointwise value of the temperature, rather than
away from the reaction zone, where the solution varies gradu-
ally, as in strategy 1. It can be shown that domain decomposition
approximations maintain spectral accuracy [10]. However, im-
position of the interface conditions at points where the solution
varies rapidly can possibly lead to large numerical errors. This
is an effect which cannot readily be analyzed by examining
the approximation of given functions. We illustrate that this
does not lead to significant errors by direct implementation
of strategy B in the solution of partial differential equations
governing combustion with a sequential reaction mechanism.

We consider the diffusional thermal model for combustion
with a sequential reaction mechanism. The reaction mechanism
is described schematically by

A— pB— C, (1)

where p is the stoichiometric coefficient for the first reaction.

TABLE IV

Errors for Strategies B and I in Approximating
(exp(—((x — s)/eF) + exp(—((x ~ 53)/e)"))/2

Strategy 5 51 o N E, E,
I 0.5 —-0.5 061 43 563 x 10°° 1.04 x 1072
1 0.49 —0.49 067 43 332 x 10 346 x 107!
B 0.5 -5 105 3t 1.28 X 1073 3.84 > 107
B 0.49 —-0.49 130 31 8.80 x 10°* 1.24 X (07!
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Thus reactant A is converted to an intermediate species 8 prior
to being converted to the final product C. Although this mecha-
nism is itself highly simplified and, in practice, many reactions
will occur in the combustion of even the simplest mixtures,
reaction models of the form {11) have been used with consider-
able success in modeling the combustion of hydrocarbons; see
e.g., [12, 29] {the intermediate is then CO and the final product
is CO,).

We assume that species A is deficient relative to the other
species in the reacting mixture so that changes in the concentra-
tions of the other species need not be tracked. After a suitable
nondimensionalization (see [25, 26]) the equations of the diffu-
sional thermal model become

Y, = VYIL, - V-VY ~ BAYW,, (12)
Z,= VL, — V- VZ + BIA(YW, — ZKW>), (13)
@, = V0 — V-V0 + BAABYW, + (1 — BZKW)), (14)

where W, and W, are the nondimensional Arrhenius reaction
rate terms for the two reactions (the expressions are given in
detail in [26]), L, and L, are the Lewis numbers (ratio of thermal
to mass diffusivity) for species A and B, respectively, ® is a
suitably nondimensionalized temperature so that ® = 1 corre-
sponds to the adiabatic burned temperature of the mixture and
& = 0 corresponds to the temperature of the fresh mixture,
and Y and Z are the mass fractions of species A and B, respec-
tively. A, 8. and & depend on the physicochemical parameters
of the problem,

Equations (12)—(14) describe the diffusion of mass and heat,
the advection of the mixture due to the gas velocity V, and the
chemical reaction. In our model we consider the case of a
cylindrical flame stabilized by a line source of fuel of strength
27k so that

v="¢
r

and we solve (12)—(14) in polar coordinates r and . The linear
stability analyses in [25, 26] suggest parameter regimes in
which axisymmetric flames are to be expected as well as param-
eter regimes in which cells along the flame front are to be ex-
pected.
The boundary conditions are
-1,

¥, Z—=0 asr— m,

(15)

and

0,250 Y—o1 asr— 0. (16}

Since the solutions are nearly constant for # large or for r near
0, these boundary conditions are imposed at finite, nonzero
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points, r., and ry which are far from the reaction zones. We have
verified that the solutions we have computed are insensitive to
the locations of these points. We have implemented a domain
decomposition method based on strategy B to compute the
solutions 10 (12)—{14). We have computed both axisymmetric
and cellular flames.

We employ a Fourier pseudo-spectral method in o and a
Chebyshev multi-domain method in r. The domain interfaces
are chosen to be circles so that the interface conditions are that
all variables and their radial derivatives are continuous across
the interfaces. We construct a single differentiation matrix over
the entire domain in r. The interface conditions are incorporated
directly into the matrix. The temporal integrator is a semi-
implicit scheme consisting of backward Euler on the diffusive
terms and forward Euler on the advective and reaction terms.
In the backward Euler step approximate factorization is em-
ployed to allow for matrix inversion separately in the r direction
and the ¢ direction. A detailed description of the temporal
integrator is given in [6].

We have implemented a domain decomposition method
based on straiegy B to compute the solutions to (12)—(14). We
first consider the one-dimensional {axially symmetric) case. In
our computations the domain interfaces are determined adap-
tively during the course of the computation by determining the
maximum of the reaction rate terms YW, and ZW,; in (12)~
(14). Strategy B is implemented by locating the points at which
the reaction rates attain their maxima. Call these points ry and
ry, respectively. With these points determined adaptively we
now have three subdomains D, = [ry, Ry}, D3 = |ry, #2]. and
Dy = [ry, ra] and the solution within these subdomains is
expected to exhibit boundary layer behavior at the interface
points ry and rz. We further split D, into two subdomains,
since the soluiion is expected to exhibit boundary layer behavior
at both ends of this subdomain and our method is based on the
assumption of one layer per subdomain. Thus defining ry =
(ry + rz)/2, we have two inner domains D, = [ry, 1y and
Dy = [ry, rz] in the flame.

We have computed a stationary, axisymmetric stready state
to (12)—(14) for the parameters

=10, L,=05 L, =04, k=25, 6§=405
We employed four domains, constructed as described above,
with 25 points within each subdomain.

These parameters give rise to a well-separated flame. In Fig.
1 we plot ©, Y, and Z for the steady state solution while in
Fig. 2 we plot the reaction rate terms YW, and ZW,. This
solution has been validated by grid refinement. The results
indicate that accurate solutions to partial differential equations
can be obtained using strategy B, and in particular the maxima
of the reaction rate terms provide an effective adaptive proce-
dure to determine the interfaces. There does not seem to be
any significant error in imposing the interface conditions in the
reaction zone.
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FIG. 1. @, Y, Z for stationary axisymmetric flame.

‘We have aiso used this method to compute cellular sequential
flames, in which the unknowns exhibit a periodic dependence
on the polar angle . For nonaxisymmetric calculations the
locations of the reaction zones vary with the angle . Therefore
the locations of the maxima for the reaction terms, r, and r;
vary with #ras well. In order to keep the intetfaces geometrically
simple, we average the reaction terms over all angles, then
find the maxima in r, and use these maxima to determine
the interfaces between adjacent subdomatns. This procedure is
similar to that employed in single domain calculations, e.g.,
[6], where the mapping parameters are chosen independent of .

In Fig. 3 we plot @, ¥, and Z as a function of  for a
stationary four-cell solution, The parameters of the calcula-
tion are

B=77 o=1051, L,=037, L, =09,
1.0-]
Ywl —*
=
o
Lt
(=
5
5 0.5
-t
B “
W2
0.0 = T —
1.0 11.0 21.0 31.0 41.0
R

FIG. 2. Reaction raie terms for same flame as in Fig. 1.
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F1G. 3. Angular dependence of ©, ¥, and Z for a cellular flame with
sequential reaction mechanism. Parameters are given in the text.

d=085 «=148 +y=0385 b=1

We note that the intermediate Z exhibits a different angular
behavior from ® or Y. Both ® and ¥ exhibit behavior character-
istic of a four cell, with four distinet minima and maxima for
0 = ¢y = 27. The intermediate Z exhibits eight distinct maxima.
As i varies the intermediate is consumed over regions of high
temperatures; however, Z also attains minima at temperature
minima where there has not been sufficient conversion of A
into B. Thus Z attains its maxima at values of ® in between
the maximum and minimum temperatures, There are two such
points per cell, thus resulting in the double peak cellular struc-
ture indicated in the figure.

In Fig. 4 we plot the loci of the maxima of the reaction rate
terms, which characterize the two reaction zones and which
are employed in the adaptive domain decomposition procedure.
There are two curves, the inner curve is associated with the
formation of the intermediate species while the outer curve is

240

12.01

-12.0 1

-24.0
-24.0

2.0 0.0 120 240

X

FIG. 4. Loci of the maxima of the reaction rate terms for a cellular flame
with sequential reaction mechanism. Parameters are given in the text.
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associated with the burning of the intermediate species. The

ce

lular structure of the reaction zone is clearly visible, particu-

larly for the second reaction. In interpreting this picture, note
that the fresh mixture emanates from a point source at the

ce

nter of the domain. The crests (at roughly 0°, 90°, 180°, and

270°) therefore point in the direction of the burned gases. There
are no significant differences in the solution when the number
of collocation points is increased.

[ - B Y
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